Guida degli insegnamenti

Syllabus

Partially translatedTradotto parzialmente
[W000488] - BIOMEDICAL SIGNAL AND DATA PROCESSINGBIOMEDICAL SIGNAL AND DATA PROCESSING
Laura BURATTINI
Lingua di erogazione: INGLESELessons taught in: ENGLISH
Laurea Magistrale - [IM13] BIOMEDICAL ENGINEERING Master Degree (2 years) - [IM13] INGEGNERIA BIOMEDICA
Dipartimento: [040040] Dipartimento Ingegneria dell'InformazioneDepartment: [040040] Dipartimento Ingegneria dell'Informazione
Anno di corsoDegree programme year : 2 - Primo Semestre
Anno offertaAcademic year: 2018-2019
Anno regolamentoAnno regolamento: 2017-2018
Obbligatorio
Crediti: 9
Ore di lezioneTeaching hours: 72
TipologiaType: B - Caratterizzante
Settore disciplinareAcademic discipline: ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICA

LINGUA INSEGNAMENTO LANGUAGE

Inglese

English


PREREQUISITI PREREQUISITES

Conoscenza base di Matlab e analisi dei segnali.

Basic knowledge of Matlab and signal processing.


MODALITÀ DI SVOLGIMENTO DEL CORSO DEVELOPMENT OF THE COURSE

44 ore di lezione teorica, 12 di esercizi 16 di svolgimento progetti

44 hours of frontal lessons, 12 hours of exercises and 16 hours of project development


RISULTATI DI APPRENDIMENTO ATTESI LEARNING OUTCOMES
Conoscenze e comprensione.

Obiettivo del corso è far conoscere e comprendere i principali strumenti teorici e pratici per l'acquisizione e l'elaborazione numerica di dati e segnali monodimensionali biomedici. La finalità è l’estrazione di parametri significativi che permettano la classificazione clinica dei soggetti analizzati. Casi di studio riguarderanno l'elaborazione del segnale elettrocardiografico (ECG) e elettromiografico (EMG).


Capacità di applicare conoscenze e comprensione.

Questo insegnamento è caratterizzante per il settore Bioingeneria (ING-INF/06) e consentirà di applicare i principali strumenti teorici e pratici per l'acquisizione e l'elaborazione numerica di dati biomedici a segnali elettrocardiografici (ECG) e elettromiografici (EMG). Agli studenti verrà inoltre chiesto di utilizzare queste conoscenze per sviluppare una progetto di ricerca durante le ore di esercitazione.


Competenze trasversali.

Capacità di sintesi, capacità di lavorare in gruppo, chiarezza espositiva, capacità di interpretare il linguaggio clinico, capacità di programmazione e di uso della strumentazione specifica. Capacità di comprendere e analizzare criticamente articoli scientifici e di contribuire a un progetto di ricerca, raggiunte anche grazie a conoscenze trasversali che includono nozioni di medicina, analisi dei segnali, analisi avanzata


Knowledge and Understanding.

Know and understand the main theoretical and practical tools for data acquisition and numerical processing of data and one-dimensional biomedical signals. The aim is to extract significant parameter for a clinical classification of the analyzed subjects. Case studies will cover the development of the electrocardiographic signal (ECG) and electromyogram (EMG).


Capacity to apply Knowledge and Understanding.

This course is characterizing for the engineering sector (ING-INF / 06) and will allow to apply knowledge about the main theoretical and practical tools for biomedical data acquisition and processing to electrocardiographic (ECG) and electromyographic (EMG) signals. The students will also have to use such knowledge to develop a research project during the lab classes.


Transversal Skills.

Abilities in synthesis, in group working, in orally reporting topics, in understanding clinical issues, in computer programming and in using specific instrumentation. Abilities to understand and critically analyze scientific papers an in contributing to the development of scientific projects, also thanks to basic knowledge of medicine, signal processing and advance analysis.



PROGRAMMA PROGRAM

-Teoria (36 ore). Segnali biomedici e classificazione in base alla loro natura e caratteristiche. I quattro stadi fondamentali dell’elaborazione dei segnali biomedici (acquisizione, trasformazione, selezione di parametri e classificazione). Esempi (elettrocardiogramma, elettromiogramma, elettroencefalogramma). Analisi in frequenza dei segnali biomedici: dalla serie di Fourier alle trasformate continua e discreta di Fourier. Conversione analogico/digitale e teorema del campionamento. Algoritmo della FFT. Esempi di applicazione (Tacogramma). Trasformata Z. Relazioni ingresso-uscita: funzioni di trasferimento ed equazioni alle differenze. Filtri numerici (FIR e IIR) e loro soluzione grafica. Variabili aleatorie e loro uso nella decisione clinica. Teorema di Bayes. Test clinico, tabella di contingenza, misure di concordanza (sensibilità e specificità) e valore predittivo (prevalenza). Curve ROC e definizione di una soglia. Coefficiente di correlazione, retta di regressione e metodo dei minimi quadrati. Processo stocastico. Stazionarietà e ergodicità. Teorema di Wiener-Kinchin per la stima della potenza spettrale. -Esercitazione (12 ore). Esercizi di applicazione pratica delle nozioni teoriche. -Sviluppo di un progetto Matlab (24 ore).

-Theory (36 hours). Biomedical signals and classification according to their nature and characteristics. The four fundamental stages of biomedical signal processing (acquisition, transformation, selection of parameters and classification). Examples (electrocardiogram, electromyogram, EEG). Frequency analysis of biomedical signals: from the Fourier series to the continuous and discrete Fourier transforms. Analog/digital conversion and sampling theorem. FFT algorithm. Application examples (Tachogram). Z transform. Input-output relations: difference equations and transfer functions. Numeric filters (FIR and IIR) and their graphics solution. Random variables and their use in clinical decision. Bayes theorem. Clinical test, contingency table, correlation measures (sensitivity and specificity) and positive predictive value (prevalence). ROC curves and definition of a threshold. Coefficient of correlation, regression and least squares method. Stochastic process. Stationarity and ergodicity. Wiener-Kinchin for estimating spectral power. -Exercise (12 hours). Exercises for the practical application of theoretical notions. - Development of a Matlab project (24 hours).


MODALITÀ DI SVOLGIMENTO DELL'ESAME DEVELOPMENT OF THE EXAMINATION
Modalità di valutazione dell'apprendimento.

Il livello di apprendimento degli studenti verrà definito attraverso la valutazione: i) di una prova scritta, obbligatoria, della durata di 2.5 hours, durante la quale gli studenti devono risolvere 4 esercizi pratici e rispondere a una domanda teorica. ii) del progetto Matlab sviluppato iii) di una prova orale, facoltativa, consistente in 3 domande teoriche, a cui si può accedere solo se nella prova scritta si è preso almeno 18. La prova orale facoltativa deve essere sostenuta nello stesso appello della prova scritta.


Criteri di valutazione dell'apprendimento.

Per il superamento della prova scritta, lo studente dovrà dimostrare di aver acquisito una conoscenza dei principi teorici della materia tale da saperli utilizzare nella risoluzione di problemi pratici.. La prova scritta verrà considerata superata se e solo se l'esercizio sul filtro verrà almeno parzialmente risolto (30%). Complessivamente, la prova scritta avrà una valutazione tra 0 3 30. Il progetto Matlab avrà una valutazione tra 0 3 30 La prova orale, se eseguita, avrà una valutazione tra 0 e 30.


Criteri di misurazione dell'apprendimento.

Attribuzione del voto finale in trentesimi


Criteri di attribuzione del voto finale.

In voto finale (V) sarà calcolato sulla base dei voti della prova scritta (V1), del progetto Matlab (V2) e della prova orale(V3), se presente, ne modo seguente:
-se non si è effettuata la prova orale: V=0.7 V1+ 0.3 V2.
-se si è effettuata la prova orale: V=0.7 ((V1+V3)/2)+0.3 V2.
La lode verrà attribuita agli studenti che, avendo conseguito la valutazione massima, abbiano dimostrato la completa padronanza della materia.


Learning Evaluation Methods.

The level of student learning will be defined by evaluating: i) a written test, which is mandatory, 2.5-hour long , and consisting of 4 practical e exercises and a theoretical question. II) the developed Matlab project iii) a oral test, which is optional and consisting of 3 theoretical questions. The oral test can be accessed by the student only if he/she passed the written test (score of 18 or more). Written and oral tests must be done in the same appeal.


Learning Evaluation Criteria.

In order to pass the written exam, students must demonstrate that they have acquired a knowledge of the subject theoretical principles such that they learned how to use them in solving practical problems. The written test will be considered to be positive if and only if the exercise on the filter is at least partially solved (30%). Overall, the written test will be graded from 0 to 30. The Matlab project will be graded from 0 to 30. The oral test, if sustained, will be graded from 0 to 30.


Learning Measurement Criteria.

Attribution of the final mark out of thirty


Final Mark Allocation Criteria.

The final mark (V) will be computed using the mark pf the written test (V1), the mark of the Matlab project (V2) and the mark of the oral test (V3), if sustained, as follows:
-if no oral test sustained: V=0.7 V1+ 0.3 V2.
-if oral test sustained : V=0.7 ((V1+V3)/2)+0.3 V2.
The honors will be given to students who, having achieved the highest rating, have demonstrated complete mastery of the subject.



TESTI CONSIGLIATI RECOMMENDED READING

1)Jackson LB. "Digital filters and signal processing", Kluwer Academic Publishers, Boston, 1993. 2) Oppenheim A, Schafer R. "Discrete-Time signal processing", Prentice Hall, Englewood Cliffs, NJ, 1989. 3) Peebles PZ. "Probability, random variables, and random signals principles", McGraw-Hill Inc., Boston, 2001. 4) Akay M. "Biomedical signal processing",Academic Press, San Diego, 1994. 5) Dispense. 6) Materiale aggiuntivo https://learn.univpm.it/course/view.php?id=7885

1)Jackson LB. "Digital filters and signal processing", Kluwer Academic Publishers, Boston, 1993. 2) Oppenheim A, Schafer R. "Discrete-Time signal processing", Prentice Hall, Englewood Cliffs, NJ, 1989. 3) Peebles PZ. "Probability, random variables, and random signals principles", McGraw-Hill Inc., Boston, 2001. 4) Akay M. "Biomedical signal processing",Academic Press, San Diego, 1994. 5) Lessons notes. 6) Additional material https://learn.univpm.it/course/view.php?id=7885


E-LEARNING E-LEARNING

No

No


Scheda insegnamento erogato nell’A.A. 2018-2019
Le informazioni contenute nella presente scheda assumono carattere definitivo solo a partire dall'A.A. di effettiva erogazione dell'insegnamento.
Academic year 2018-2019

 


Università Politecnica delle Marche
P.zza Roma 22, 60121 Ancona
Tel (+39) 071.220.1, Fax (+39) 071.220.2324
P.I. 00382520427